A Master Plan 1.5 Using Optical Scan Counters: An Analysis of the 2012 Presidential Election Data in South Korea

Abstract

- Optical scan counters in election have been used to count votes, sorting them into classified and unclassified ballots. The unclassified ballots are manually counted by electoral officials.
- We propose a measure **K**, to test between-candidate relative inequality whose valid ballots are unclassified by the optical counters. We prove **E[K]=1** and Var(K) depends on electoral district size and unclassified rate.
- The 2012 presidential election in South Korea was a close election with 52% vs 48% for the top two candidates.
- We found K=1.5 nationally, which indicates a strong discrepancy between *machine counted* and *human counted* ballots.
- * Both systematic unintentional bias and intentional manipulation were considered to explain this. Simulation results from the latter scenario with rigged optical counters are quite close to actual vote results, suggesting the election might have been affected by a national manipulation as optical counters are vulnerable programmable devices.
- The proposed statistical methods for K contribute to securing accurate vote counting in elections worldwide where the optical counters are used.

Background: Votes Sorting Process: Classified versus Unclassified

Motivation Example

Voting results for three specific districts from three presidential elections in 2002, 2007, 2012

	Votes from t	he classified	Votes from th		
	(sorted by c	p-scanners)	(sorted by offic		
Election year and district	candidate 1 (P _c) ^a	candidate 2 (M _c)ª	candidate 1 (P _u) ^b	candidate 2 (M _u) ^b	K=K _U /K _C
16 th in 2002, district G	36.3%	56.5%	33.7%	50.3%	1.04
17 th in 2007, district N	23.1%	47.7%	25.1%	50.7%	1.02
district Y	16.9%	59.6%	17.5%	59.4%	1.04
18 th in 2012, district G	40.2%	59.4%	39.9%	43.7%	1.35
district N	46.3%	53.3%	45.0%	36.0%	1.44
district Y	51.9%	47.8%	54.4%	36.6%	1.37

^a P_c = (votes for candidate 1/total votes); M_c = (votes for candidate 2/total votes) from classified ^b P_{II} = (candidate 1/total votes); M_{II} = (candidate 2/total votes) from unclassified; K_{II} = P_{II}/M_{II}

HeeKyoung Chun¹, Pierre-Jérôme Bergeron², HyunSeung Kim³, OuJoon Kim³, Hwashin Hyun Shin ^{4*} ¹GeorgiaSouthern University ²University of Ottawa ³Project Boo Inc. ⁴Queen's University ^{*}corresponding author

A Proposed Measure for Between-Candidate Relative Inequality

- $K=K_U/K_c = (P2/M2)/(P1/M1)$ for any electoral district. - P1 & M1: votes counts from the classified votes - P2 & M2: votes counts from the unclassified votes
- Known fact: $X \sim B(n, p), E\left[\frac{1}{X+1}\right] = \frac{1}{(n+1)p} \simeq \frac{1}{np}$ for large n

Theoretical expectation of K: E[K]=1

 $\boldsymbol{E}[\boldsymbol{K}] = E\left[\frac{\frac{P^2}{M_2}}{\frac{P^1}{M_1}}\right] = E\left[\frac{P^2}{P^1}\right] \cdot E\left[\frac{M^1}{M^2}\right] = \frac{r \cdot (1-r)}{(1-r) \cdot r} = 1$ $P1^{\sim} B(P, 1-r), P2^{\sim}B(P,r), where P1+P2=P fixed.$ $M1^{B}(M,1-r)$, $M2^{(M,r)}$, where M1+M2=M fixed. $r=Pr(U_{M})=Pr(U_{P})$, rate of the unclassified votes

• Variance of K depending on electoral district size and r

$$Var(K) \cong \frac{(P+M)r(1-r)+1}{PM(r(1-r))^2} \cong \frac{1}{P}$$

National Model: K=1.5 (Linear Regression with R²=0.98)

P1/M1 (from classified votes)

distribution of K

(P+M)PMr(1-r)

distribution of log(K)

Simulations with Two Scenarios

Scenario 1: unintentional systematic bias Assume a consistent op-scan performance across the country:

P2 ~ B(P, r+ β), where M2 ~ B(M, r). Scenario 2: intentional systematic manipulation Apply conditional Bernoulli and multinomial distributions to sorting algorithm with K=1.5.

Scenario 1 resulted in an overall mismatch of the variability of unclassified rates observed at district level, whereas scenario 2 returned comparable results to the actual election outcomes at both district and national levels.

Results: Actual vs. Simulated Votes

			Votes from	the	Votes from the		
251	Total	Total	classified		unclassified		
districts	number of	unclassifie	candidate	candidate	candidate	candidate	Invalid
combined	votes	d votes	1	2	1	2	votes
Actual	29,827,252	1,111,165	14,782,150	13,828,239	586,632	397,505	112,360
Simulated 1	29,827,252	1,229,495	14,683,046	13,797,770	685,822	427,442	112,570
Simulated 2	29,827,252	1,080,700	14,787,440	13,857,352	594,739	370,907	111,117

Merits of the Relative Ratio K

- The proposed method can be more effective than auditing when the op-scan counters are used.
- The K-value can be examined for some electoral districts individually for local, regional, or national levels.
- Easy and economic for time and cost required

Discussions on Op-scanners and Fair Election

- This study demonstrates a potential serious loophole in using the op-scan counters, which can be error-free but not manipulation-free
- Op-scan counters can generate serious misclassifications by a pre-programmed **algorithm**, not by random mechanical malfunctions.
- Serious errors can go undetected if results are not audited effectively, resulting in election winner change.

Solutions for detecting election frauds:

- ✓ Auditing a well curated paper trail against the electronic results or a random sample of the ballot boxes
- ✓ The proposed measure (K) to detect between candidate relative inequality

Total Vote Candidate 2

Simulation Process (Scenario 2)

Total Vote Candidate 2